刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,过顶点
的直线
与椭圆
相交于两点
.
(1)求椭圆
的方程;
(2)若点
在椭圆上且满足
,求直线
的斜率
的值.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-25 04:18:49
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,且经过点
.
(1)求椭圆
C
的方程;
(2)设过点
的直线
l
与椭圆
C
交于
,
两点,求
的取值范围.
同类题2
已知中心在原点,焦点在坐标轴上的椭圆
的方程为
它的离心率为
,一个焦点是(-1,0),过直线
上一点引椭圆
的两条切线,切点分别是A、
A.
(1)求椭圆
的方程;
(2)若在椭圆
上的点
处的切线方程是
.求证:直线AB恒过定点C,并求出定点C的坐标;
(3)是否存在实数
,使得求证:
(点C为直线AB恒过的定点).若存在
,请求出,若不存在请说明理由
同类题3
已如椭圆
E
:
(
)的离心率为
,点
在
E
上.
(1)求
E
的方程:
(2)斜率不为0的直线
l
经过点
,且与
E
交于
P
,
Q
两点,试问:是否存在定点
C
,使得
?若存在,求
C
的坐标:若不存在,请说明理由
同类题4
已知椭圆
(
)的离心率为
,且点
在椭圆
上,设与
平行的直线
与椭圆
相交于
,
两点,直线
,
分别与
轴正半轴交于
,
两点.
(I)求椭圆
的标准方程;
(Ⅱ)判断
的值是否为定值,并证明你的结论.
同类题5
已知椭圆M:
(a>b>0)的一个焦点为F(﹣1,0),离心率
,左右顶点分别为A、B,经过点F的直线l与椭圆M交于C、D两点(与A、B不重合).
(1)求椭圆M的方程;
(2)记△ABC与△ABD的面积分别为S
1
和S
2
,求|S
1
﹣S
2
|的最大值,并求此时l的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程