刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,过顶点
的直线
与椭圆
相交于两点
.
(1)求椭圆
的方程;
(2)若点
在椭圆上且满足
,求直线
的斜率
的值.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-25 04:18:49
答案(点此获取答案解析)
同类题1
已知椭圆
:
经过点
且离心率为
.
(1)求椭圆方程;
(2)是否存在直线
,使椭圆
上存在不同两点
关于该直线对称?若存在,求
的取值范围;若不存在,请说明理由.
同类题2
设点
为椭圆
的右焦点,点
在椭圆
上,已知椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过右焦点
的直线
与椭圆相交于
,
两点,记
三条边所在直线的斜率的乘积为
,求
的最大值.
同类题3
已知椭圆
的离心率为
,点
在
上.
(1) 求椭圆的方程;
(2) 设
分别是椭圆
的上、下焦点,过
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.
同类题4
已知椭圆
(
)的离心率为
,椭圆
上一点
到椭圆
两焦点距离之和为
,如图,
为坐标原点,平行与
的直线
l
交椭圆
于不同的两点
、
.
(1)求椭圆方程;
(2)当
在第一象限时,直线
,
交
x
轴于
,
,若
PE
=
PF
,求点
的坐标.
同类题5
已知椭圆
C
:
的右焦点为
,离心率为
,直线
与椭圆
C
交于不同两点
,直线
分别交
轴于
两点.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)求证:
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程