刷题首页
题库
高中数学
题干
已知椭圆
:
的离心率
,且过焦点的最短弦长为3.
(1)求椭圆
的标准方程;
(2)设
分别是椭圆
的左、右焦点,过点
的直线
与曲线
交于不同的两点
、
,求
的内切圆半径的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 09:11:16
答案(点此获取答案解析)
同类题1
已知椭圆
E
的中心为坐标原点,离心率为
,
E
的右焦点与抛物线
的焦点
重合,
是
C
的准线与
E
的两个交点,则
( )
A.
B.
C.
D.
同类题2
椭圆
的离心率为
,则
的值为( )
A.-21
B.21
C.
或21
D.
或21
同类题3
已知椭圆
的离心率为
,且经过点
.
求椭圆的标准方程;
过点
的动直线
交椭圆于另一点
,设
,过椭圆中心
作直线
的垂线交
于点
,求证:
为定值.
同类题4
已知椭圆
:
的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)直线
与椭圆
相交于
,
两点,若
,求
(
为坐标原点)面积的最大值及此时直线
的方程.
同类题5
设抛物线
的准线与
轴交于
,焦点为
,以
,
为焦点,离心率为
的椭圆的两条准线之间的距离为
A.4
B.6
C.8
D.10
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中三角形(四边形)的面积