- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- + 椭圆的离心率
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
椭圆
与抛物线
相交于点M,N,过点
的直线与抛物线E相切于M,N点,设椭圆的右顶点为A,若四边形PMAN为平行四边形,则椭圆的离心率为



A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆C的左、右焦点坐标分别是 (
,0), (
,0),离心率是
,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标.



(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标.
已知椭圆
的离心率为
,抛物线
的焦点是
,
是抛物线上的点,H为直线
上任一点,A,B分别为椭圆C的上、下顶点,且A,B,H三点的连线可以构成三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线HA,HB与椭圆C的另一交点分别为点D,E,求证:直线DE过定点.






(Ⅰ)求椭圆C的方程;
(Ⅱ)直线HA,HB与椭圆C的另一交点分别为点D,E,求证:直线DE过定点.
已知椭圆C:
上的点到右焦点F的最大距离为
,离心率为
.

求椭圆C的方程;
如图,过点
的动直线l交椭圆C于M,N两点,直线l的斜率为
,A为椭圆上的一点,直线OA的斜率为
,且
,B是线段OA延长线上一点,且
过原点O作以B为圆心,以
为半径的圆B的切线,切点为
令
,求
取值范围.















已知椭圆C:
l(a>b>0)经过点(
,1),且离心率e
.
(1)求椭圆C的方程;
(2)若直线l与椭圆C相交于A、B两点,且满足∠AOB=90°(O为坐标原点),求|AB|的取值范围.



(1)求椭圆C的方程;
(2)若直线l与椭圆C相交于A、B两点,且满足∠AOB=90°(O为坐标原点),求|AB|的取值范围.
已知椭圆C:
(a>b>0)的两个焦点分别为F1,F2,离心率为
,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.
(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.


(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.