刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,抛物线
的焦点是
,
是抛物线上的点,
H
为直线
上任一点,
A
,
B
分别为椭圆
C
的上、下顶点,且
A
,
B
,
H
三点的连线可以构成三角形.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)直线
HA
,
HB
与椭圆
C
的另一交点分别为点
D
,
E
,求证:直线
DE
过定点.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 12:55:03
答案(点此获取答案解析)
同类题1
在平面直角坐标系
xoy
中,椭圆
C
的中心为原点,焦点
、
在
x
轴上,离心率为
,过
的直线
l
交
C
于
A
、
B
两点,且
的周长为16,那么
C
的方程为( )
A.
B.
C.
D.
同类题2
已知椭圆的中心在原点,焦点在
轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点
.
(1)求椭圆的方程;
(2)求
的取值范围;
(3)若直线
不过点
,求证:直线
的斜率互为相反数.
同类题3
设椭圆C:
过点(0,4),离心率为
(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)且斜率为
的直线被C所截线段的中点坐标.
同类题4
已知椭圆
上的点
到左,右两焦点为
,
的距离之和为
,离心率为
.
(1)求椭圆的标准方程;
(2)过右焦点
的直线
交椭圆于
两点,若
轴上一点
满足
,求直线
的斜率
的值.
同类题5
已知椭圆
C
:
(
)经过点
,离心率为
.
(1)求椭圆
C
的方程;
(2)设
O
为原点,直线
l
:
(
)与椭圆
C
交于两个不同点
P
、
Q
,直线
AP
与
x
轴交于点
M
,直线
AQ
与
x
轴交于点
N
,若
,求证:直线
l
经过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的直线过定点问题