刷题首页
题库
高中数学
题干
已知椭圆
C
:
(
a
>
b
>0)的两个焦点分别为
F
1
,
F
2
,离心率为
,过
F
1
的直线
l
与椭圆
C
交于
M
,
N
两点,且△
MNF
2
的周长为8.
(1)求椭圆
C
的方程;
(2)若直线
y
=
kx
+
b
与椭圆
C
分别交于
A
,
B
两点,且
OA
⊥
OB
,试问点
O
到直线
AB
的距离是否为定值,证明你的结论.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 03:50:34
答案(点此获取答案解析)
同类题1
已知椭圆
的左顶点为
,离心率为
,过点
且斜率为
的直线
与椭圆交于点
与
轴交于点
.
(1)求椭圆的方程;
(2)设点
为
的中点.
(i)若
轴上存在点
,对于任意的
,都有
(
为原点),求出点
的坐标;
(ii)射线
(
为原点)与椭圆
交于点
,满足
,求正数
的值.
同类题2
已知椭圆
(
)的离心率为
,椭圆
上一点
到椭圆
两焦点距离之和为
,如图,
为坐标原点,平行与
的直线
l
交椭圆
于不同的两点
、
.
(1)求椭圆方程;
(2)当
在第一象限时,直线
,
交
x
轴于
,
,若
PE
=
PF
,求点
的坐标.
同类题3
已知以原点
为中心的椭圆的一条准线方程为
,离心率
,
是椭圆上的动点.
(Ⅰ)若
的坐标分别是
,求
的最大值;
(Ⅱ)如图,点
的坐标为
,
是圆
上的点,
是点
在
轴上的射影,点
满足条件:
,
,求线段
的中点
的轨迹方程.
同类题4
已知椭圆
的离心率为
,则实数
等于( )
A.2
B.2或
C.2或6
D.2或8.
同类题5
已知椭圆
的离心率为
,且过点
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与圆
相切于点
,且
与椭圆
只有一个公共点
.
①求证:
;
②当
为何值时,
取得最大值?并求出最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题