刷题首页
题库
高中数学
题干
已知离心率为
的双曲线
的右焦点为
F
,直线
l
过点
F
且垂直于
x
轴,若
l
被抛物线
截得的线段长为4,则
p
=( )
A.1
B.2
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-02-11 09:25:55
答案(点此获取答案解析)
同类题1
已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于
两点,且以
为直径的圆经过原点
,求证:点
到直线
的距离为定值;
(3)在(2)的条件下,求
面积的最大值.
同类题2
在直角坐标系
中,椭圆
的离心率为
,椭圆短轴上的一个顶点为
.
(1)求椭圆
的方程;
(2)已知点
,动直线
与椭圆
相交于
两点,若直线
的斜率均存在,求证:直线
的斜率依次成等差数列.
同类题3
设椭圆
过点
,离心率为
(Ⅰ)求椭圆
的方程;
(Ⅱ)当过点
的动直线
与椭圆
相交与两不同点
时,在线段
上取点
,满足
,证明:点
的轨迹与
无关.
同类题4
设椭圆
的离心率为
,直线
过椭圆的右焦点
,与椭圆交于点
;若
垂直于
轴,则
.
(1)求椭圆的方程;
(2)椭圆的左右顶点分别为
,直线
与直线
交于点
.求证:点
在定直线上.
同类题5
已知椭圆
C
:
的右焦点为
,离心率为
,直线
与椭圆
C
交于不同两点
,直线
分别交
轴于
两点.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)求证:
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
根据抛物线上的点求标准方程