- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- + 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
,若四点
,
中恰有三点在椭圆
上.
(1)指出四点
中,可能不在椭圆
上的点,并说明理由;同时求出椭圆
的方程;
(2)过椭圆
的右焦点
的直线
与
交于
两点,点
的坐标为
。设
为坐标原点,证明:
.






(1)指出四点



(2)过椭圆









分别求适合下列条件的椭圆的标准方程.
(1)焦点在坐标轴上,且经过点A (
,-2),B(-2
,1);
(2)与椭圆
有相同焦点且经过点M(
,1).
(1)焦点在坐标轴上,且经过点A (


(2)与椭圆


某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).

(1)若最大拱高
为6米,则隧道设计的拱宽
至少是多少米?(结果取整数)
(2)如何设计拱高
和拱宽
,才能使半个椭圆形隧道的土方工程量最小?(结果取整数)
参考数据:
,椭圆的面积公式为
,其中
,
分别为椭圆的长半轴和短半轴长.

(1)若最大拱高


(2)如何设计拱高


参考数据:




已知焦点在
轴上的椭圆
上的点到两个焦点的距离和为10,椭圆
经过点
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右焦点
作与
轴垂直的直线
,直线
上存在
、
两点满足
,求△
面积的最小值;
(3)若与
轴不垂直的直线
交椭圆
于
、
两点,交
轴于定点
,线段
的垂直平分线交
轴于点
,且
为定值,求点
的坐标.




(1)求椭圆

(2)过椭圆









(3)若与












已知椭圆C的中心在坐标原点焦点在x轴上,椭圆C上一点A(2
,﹣1)到两焦点距离之和为8.若点B是椭圆C的上顶点,点P,Q是椭圆C上异于点B的任意两点.
(1)求椭圆C的方程;
(2)若BP⊥BQ,且满足3
2
的点D在y轴上,求直线BP的方程;
(3)若直线BP与BQ的斜率乘积为常数λ(λ<0),试判断直线PQ是否经过定点.若经过定点,请求出定点坐标;若不经过定点,请说明理由.

(1)求椭圆C的方程;
(2)若BP⊥BQ,且满足3


(3)若直线BP与BQ的斜率乘积为常数λ(λ<0),试判断直线PQ是否经过定点.若经过定点,请求出定点坐标;若不经过定点,请说明理由.
已知椭圆
过点
,
是该椭圆的左、右焦点,
是上顶点,且
是等腰直角三角形.
(1)求
的方程;
(2)已知
是坐标原点,直线
与椭圆
相交于
两点,点
在
上且满足四边形
是一个平行四边形,求
的最大值.





(1)求

(2)已知








在平面直角坐标系
中,已知椭圆
的左焦点为
,点
在椭圆
上.

(1)求椭圆
的方程;
(2)已知圆
,连接
并延长交圆
于点
为椭圆长轴上一点(异于左、右焦点),过点
作椭圆长轴的垂线分别交椭圆
和圆
于点
(
均在
轴上方).连接
,记
的斜率为
,
的斜率为
.
①求
的值;
②求证:直线
的交点在定直线上.






(1)求椭圆

(2)已知圆















①求

②求证:直线
