刷题首页
题库
高中数学
题干
在平面直角坐标系
中,已知椭圆
的左焦点为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)已知圆
,连接
并延长交圆
于点
为椭圆长轴上一点(异于左、右焦点),过点
作椭圆长轴的垂线分别交椭圆
和圆
于点
(
均在
轴上方).连接
,记
的斜率为
,
的斜率为
.
①求
的值;
②求证:直线
的交点在定直线上.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-03 12:19:18
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,已知椭圆
的离心率为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)设直线与圆
相切,与椭圆
相交于
两点,求证:
是定值.
同类题2
分别求满足下列条件的椭圆的标准方程:
(1)焦点在
轴上,焦距为4,且椭圆过点
;
(2)焦点在坐标轴上,且椭圆过点
和
同类题3
已知椭圆
,
为椭圆与
轴的一个交点,过原点
的直线交椭圆于
两点,且
,
.
(1)求此椭圆的方程;
(2)若
为椭圆上的点且
的横坐标
,试判断
是否为定值?若是定值,求出该定值;若不是定值,请说明理由.
同类题4
已知椭圆
的左,右焦点分别为
,
,点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)是否存在斜率为
的直线
与椭圆
相交于
,
两点,使得
?若存在,求出直线的方程;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定直线