刷题首页
题库
高中数学
题干
分别求适合下列条件的椭圆的标准方程.
(1)焦点在坐标轴上,且经过点A (
,-2),B(-2
,1);
(2)与椭圆
有相同焦点且经过点M(
,1).
上一题
下一题
0.99难度 解答题 更新时间:2019-11-27 04:43:33
答案(点此获取答案解析)
同类题1
已知椭圆
:
的一个焦点为
,且经过点
,
是椭圆
上两点,
.
Ⅰ
求椭圆方程;
Ⅱ
求
的取值范围.
同类题2
如图,在平面直角坐标系
中,焦点在
轴上的鞘园C:
经过点
,且
经过点
作斜率为
的直线
交椭圆
C
与
A
、
B
两点(
A
在
轴下方).
(1)求椭圆
C
的方程;
(2)过点
且平行于
的直线交椭圆于点
M
、
N
,求
的值;
(3)记直线
与
轴的交点为
P
,若
,求直线
的斜率
的值.
同类题3
已知,椭圆
过点
,两个焦点为
,
,
是椭圆
上的两个动点,直线
的斜率与
的斜率互为相反数.
求椭圆
的方程;
求证:直线
的斜率为定值.
同类题4
在平面直角坐标系
中,椭圆E:
(a>0,b>0)经过点A(
,
),且点F(0,-1)为其一个焦点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E与y轴的两个交点为A
1
,A
2
,不在y轴上的动点P在直线y=b
2
上运动,直线PA
1
,PA
2
分别与椭圆E交于点M,N,证明:直线MN通过一个定点,且△FMN的周长为定值.
同类题5
椭圆
的左右顶点分别
,过点
作
轴的垂线
,点
是直线
上的一点,连接
交椭圆开点
,坐标原点为
,且
,则
________.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程