刷题首页
题库
高中数学
题干
已知椭圆
C
的中心在坐标原点焦点在
x
轴上,椭圆
C
上一点
A
(2
,﹣1)到两焦点距离之和为8.若点
B
是椭圆
C
的上顶点,点
P
,
Q
是椭圆
C
上异于点
B
的任意两点.
(1)求椭圆
C
的方程;
(2)若
BP
⊥
BQ
,且满足3
2
的点
D
在
y
轴上,求直线
BP
的方程;
(3)若直线
BP
与
BQ
的斜率乘积为常数
λ
(
λ
<0),试判断直线
PQ
是否经过定点.若经过定点,请求出定点坐标;若不经过定点,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-02 10:47:10
答案(点此获取答案解析)
同类题1
已知椭圆
(
)的两个焦点
,
,点
在此椭圆上.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
相交于
两点,设点
,记直线
的斜率分别为
,求证:
为定值.
同类题2
(1)求一个焦点为
F
(2,0),且经过点
A
(3,0)的椭圆的标准方程.
(2)已知双曲线的焦点在
x
轴,渐近线方程为
y
x
,且过点(3,
),求双曲线的标准方程.
同类题3
已知椭圆
过点
,且其中一个焦点的坐标为
.
(1)求椭圆
的方程;
(2)若经过
的直线
(与
轴不重合)与椭圆交于
两点,在
轴上是否存在点
使得
为定值?若存在,求岀点
的坐标;若不存在,请说明理由.
同类题4
已知
分别是椭圆
的左、右焦点,
是椭圆
上一点,且
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,且
,试求点
到直线
的距离.
同类题5
已知椭圆
的离心率为
,且椭圆过点(1,
)
(1)求椭圆
的方程;
(2)设
是圆
上任一点,由
引椭圆两条切线
,当切线斜率存在时,求证两条斜率的积为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的直线过定点问题