刷题首页
题库
高中数学
题干
已知椭圆
:
,若四点
,
中恰有三点在椭圆
上.
(1)指出四点
中,可能不在椭圆
上的点,并说明理由;同时求出椭圆
的方程;
(2)过椭圆
的右焦点
的直线
与
交于
两点,点
的坐标为
。设
为坐标原点,证明:
.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-14 05:41:23
答案(点此获取答案解析)
同类题1
已知椭圆
的右焦点为
,且椭圆过点
.
(1)求椭圆的标准方程;
(2)过椭圆
C
的右焦点
作直线
l
交椭圆
C
于
A
,
B
两点,交
y
轴于
M
,若
(
为
的面积,
为
的面积),
,问
为定值吗?若为定值求出此定值,并证明你的结论,若不为定值说出你的理由.
同类题2
如图,已知椭圆
C
的方程为
,
为半焦距,椭圆
C
的左、右焦点分别为
,椭圆
C
的离心率为
.
(1)若椭圆过点
,两条准线之间的距离为
,求椭圆
C
的标准方程;
(2)设直线
与椭圆
C
相交于
,
两点,且
四点共圆,若
,试求
的最大值.
同类题3
已知点
是椭圆
上的一点,
、
为椭圆的两焦点,若
,试求:
(1)椭圆的方程;
(2)
的面积.
同类题4
(本题满分12分)已知椭圆C:
(a>b>0)的上顶点为A,左,右焦点分别为F
1
,F
2
,且椭圆C过点P(
,
),以AP为直径的圆恰好过右焦点F
2
.
(1)求椭圆C的方程;
(2)若动直线l与椭圆C有且只有一个公共点,试问:在
轴上是否存在两定点,使其到直线l的距离之积为1?若存在,请求出两定点坐标;若不存在,请说明理由.
同类题5
椭圆
:
的左右焦点分别为
,
,左右顶点分别为
,
,
为椭圆
上的动点(不与
,
重合),且直线
与
的斜率的乘积为
.
(1)求椭圆
的方程;
(2)过
作两条互相垂直的直线
与
(均不与
轴重合)分别与椭圆
交于
,
,
,
四点,线段
、
的中点分别为
、
,求证:直线
过定点,并求出该定点坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程