- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的方程为
,椭圆
的离心率正好是双曲线
的离心率的倒数,椭圆
的短轴长等于抛物线
上一点
到抛物线焦点
的距离.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
的两个交点为
,
两点,已知圆
:
与
轴的交点分别为
,
(点
在
轴的正半轴),且直线
与圆
相切,求
的面积与
的面积乘积的最大值.








(1)求椭圆

(2)若直线















已知椭圆
的一个焦点与抛物线
的焦点重合,且此抛物线的准线被椭圆
截得的弦长为
.
(1)求椭圆
的标准方程;
(2)直线
交椭圆
于
、
两点,线段
的中点为
,直线
是线段
的垂直平分线,试问直线
是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.




(1)求椭圆

(2)直线









已知椭圆
:
的左,右焦点分别为
,
,点
为椭圆
上任意一点,点
关于原点
的对称点为点
,有
,且当
的面积最大时为等边三角形.
(1)求椭圆
的标准方程;
(2)与圆
相切的直线
:
交椭圆
于
,
两点,若椭圆上存在点
满足
,求四边形
面积的取值范围.











(1)求椭圆

(2)与圆









已知椭圆
:
的焦点分别为
,
,椭圆
的离心率为
,且经过点
,经过
,
作平行直线
,
,交椭圆
于两点
,
和两点
,
.
(1)求
的方程;
(2)求四边形
面积的最大值.
















(1)求

(2)求四边形

已知椭圆
的左、右焦点为
、
,
,若圆Q方程
,且圆心Q满足
.

(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
交椭圆
于A、B两点,过P与
垂直的直线
交圆Q于C、D两点,M为线段CD中点,若
的面积为
,求
的值.







(Ⅰ)求椭圆

(Ⅱ)过点








已知椭圆
的左、右焦点为
、
,
,若圆Q方程
,且圆心Q在椭圆上.

(1)求椭圆
的方程;
(2)已知直线
交椭圆
于A、B两点,过直线
上一动点P作与
垂直的直线
交圆Q于C、D两点,M为弦CD中点,
的面积是否为定值?若为定值,求出此定值;若不为定值,说明你的理由.






(1)求椭圆

(2)已知直线






已知椭圆
的长轴长为4,过点
且斜率为
的直线交椭圆于
两点,且点
为线段
的中点
(1)求椭圆
的方程;
(2)设点
为坐标原点,过右焦点
的直线交椭圆于
两点,(
不在
轴上),求
面积
的最大值.






(1)求椭圆

(2)设点







已知椭圆
的短轴长为
,右焦点
与抛物线
的焦点重合,
为坐标原点
(1)求椭圆
的方程;
(2)设
、
是椭圆
上的不同两点,点
,且满足
,若
,求直线
的斜率的取值范围.





(1)求椭圆

(2)设






