刷题首页
题库
高中数学
题干
已知椭圆
的长轴长为4,过点
且斜率为
的直线交椭圆于
两点,且点
为线段
的中点
(1)求椭圆
的方程;
(2)设点
为坐标原点,过右焦点
的直线交椭圆于
两点,(
不在
轴上),求
面积
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-02 09:08:15
答案(点此获取答案解析)
同类题1
平面直角坐标系
中,过椭圆
:
(
)焦点的直线
交
于
两点,
为
的中点,且
的斜率为9.
(Ⅰ)求
的方程;
(Ⅱ)
是
的左、右顶点,
是
上的两点,若
,求四边形
面积的最大值.
同类题2
椭圆中心为坐标原点O,对称轴为坐标轴,且过M(2,
) ,N(
,1)两点,
(I)求椭圆的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且
?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由.
同类题3
已知椭圆
的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直径的圆的周长等于
,直线
l
与椭圆
C
交于
两点,其中直线
l
不过原点.
(1)求椭圆
C
的方程;
(2)设直线
的斜率分别为
,其中
且
.记
的面积为
S
.分别以
为直径的圆的面积依次为
,求
的最小值.
同类题4
如图,已知椭圆
,
为椭圆的左右顶点,焦点
到短轴端点的距离为2,且
,
为椭圆
上异于
的两点,直线
的斜率等于直线
斜率的2倍.
(1)求直线
与直线
的斜率乘积值;
(2)求证:直线
过定点,并求出该定点;
(3)求三角形
的面积
的最大值.
同类题5
在平面直角坐标系
中,椭圆
的中心为坐标原点,左焦点为
,
为椭圆
的上顶点,且
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知直线
:
与椭圆
交于
,两点,直线
:
(
)与椭圆
交于
两点,且
,如图所示.
(ⅰ)证明:
;
(ⅱ)求四边形
的面积
的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程