刷题首页
题库
高中数学
题干
设椭圆
:
的左,右焦点分别为
,
,其离心率为
,过
的直线
与
C
交于
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)设椭圆
的上顶点为
,证明:当
的斜率为
时,点
在以
为直径的圆上.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-28 12:30:28
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,点
在椭圆
上
(
)求
的方程.
(
)设直线
不经过
点且与
相交于
、
两点,若直线
与直线
的斜率的和为
,
证明:
过定点.
同类题2
如图,已知椭圆
的离心率为
,
、
分别是椭圆的左、右焦点,点
是椭圆上任意一点,且
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)在直线
上是否存在点
Q
,使以
为直径的圆经过坐标原点
O
,若存在,求出线段
的长的最小值,若不存在,请说明理由.
同类题3
已知:椭园
过点
直线倾斜角为
原点到该直线的距离为
(1)求椭圆的方程;
(2)斜率大于零的直线过
D
(-1,0)与椭圆交于
E
、
F
两点,若
求直线
EF
的方程;
(3)是否存在实数
直线
交椭园于
P
、
Q
两点,以
PQ
为直径的圆过点
D
(-1,0)?若存在,求出
的值;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
讨论椭圆与直线的位置关系