- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
过点
.
(Ⅰ)求椭圆
的方程,并求其离心率;
(Ⅱ)过点
作
轴的垂线
,设点
为第四象限内一点且在椭圆
上(点
不在直线
上),直线
关于
的对称直线
与椭圆交于另一点
.设
为坐标原点,判断直线
与直线
的位置关系,并说明理由.


(Ⅰ)求椭圆

(Ⅱ)过点














已知椭圆
的离心率为
,
分别为椭圆的左右焦点,
为椭圆短轴的一个端点,
的面积为
.
(1)求椭圆的方程;
(2)若
是椭圆上异于顶点的四个点
与
相交于点
,且
,求
的取值范围.






(1)求椭圆的方程;
(2)若






在平面直角坐标系
中,已知
、
分别为椭圆
的左、右焦点,且椭圆
经过点
和点
,其中
为椭圆
的离心率.
(1)求椭圆
的标准方程;
(2)过点
的直线
交椭圆
于另一点
,点
在直线
上,且
,若
,求直线
的斜率.









(1)求椭圆

(2)过点









如图,已知
是椭圆
的左焦点,且椭圆
经过点
.

(Ⅰ)求椭圆
的方程;
(Ⅱ)若过点
的直线
交椭圆
于
、
两点,线段
的中点为
,过
且与
垂直的直线与
轴和
轴分别交于
、
两点,记
、
的面积分别为
、
.若
,求直线
的方程.





(Ⅰ)求椭圆

(Ⅱ)若过点



















已知椭圆E:
的一个焦点为
,长轴与短轴的比为2:1.直线
与椭圆E交于P、Q两点,其中
为直线
的斜率.
(1)求椭圆E的方程;
(2)若以线段PQ为直径的圆过坐标原点O,问:是否存在一个以坐标原点O为圆心的定圆O,不论直线
的斜率
取何值,定圆O恒与直线
相切?如果存在,求出圆O的方程及实数m的取值范围;如果不存在,请说明理由.





(1)求椭圆E的方程;
(2)若以线段PQ为直径的圆过坐标原点O,问:是否存在一个以坐标原点O为圆心的定圆O,不论直线



已知椭圆
,离心率为
,点
在椭圆
上,且
的周长为6.
(1)求椭圆
的标准方程;
(2)设椭圆
的左右焦点分别为
,
,左右顶点分别为
,
,点
,
为椭圆
上位于
轴上方的两点,且
,记直线
,
的斜率分别为
,
.若
,求直线
的方程.





(1)求椭圆

(2)设椭圆
















已知椭圆
长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线
过点
,且与椭圆相交于另一点
.
(1)求椭圆的方程;
(2)若线段
长为
,求直线
的倾斜角;
(3)点
在线段
的垂直平分线上,且
,求
的值.





(1)求椭圆的方程;
(2)若线段



(3)点




已知椭圆
,
、
为椭圆的左、右焦点,
为椭圆上一点,且
.
(1)求椭圆的标准方程;
(2)设直线
,过点
的直线交椭圆于
、
两点,线段
的垂直平分线分别交直线
、直线
于
、
两点,当
最小时,求直线
的方程.





(1)求椭圆的标准方程;
(2)设直线











已知椭圆
:
的左顶点为
,右焦点为
,斜率为1的直线与椭圆
交于
,
两点,且
,其中
为坐标原点.
(1)求椭圆
的标准方程;
(2)设过点
且与直线
平行的直线与椭圆
交于
,
两点,若点
满足
,且
与椭圆
的另一个交点为
,求
的值.









(1)求椭圆

(2)设过点











已知椭圆
的左、右焦点分别为
,
,离心率为
,过
作直线
与椭圆
交于
,
两点,
的周长为8.
(1)求椭圆
的标准方程;
(2)问:
的内切圆面积是否有最大值?若有,试求出最大值;若没有,说明理由.










(1)求椭圆

(2)问:
