刷题首页
题库
高中数学
题干
已知椭圆
的左、右焦点分别为
,
,离心率为
,过
作直线
与椭圆
交于
,
两点,
的周长为8.
(1)求椭圆
的标准方程;
(2)问:
的内切圆面积是否有最大值?若有,试求出最大值;若没有,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-12 01:22:15
答案(点此获取答案解析)
同类题1
设点
、
分别是椭圆
的左、右焦点,
为椭圆
上任意一点,且
的最小值为
.
(1)求椭圆
的方程;
(2)设直线
(直线
、
不重合),若
、
均与椭圆
相切,试探究在
轴上是否存在定点
,使点
到
、
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
同类题2
小颖用计算器探索方程ax
2
+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=﹣3.4,则方程的另一个近似根(精确到0.1)为( )
同类题3
己知椭圆
的一个顶点坐标为
,离心率为
,直线
交椭圆于不同的两点
(Ⅰ)求椭圆
的方程;
(Ⅱ)设点
,当
的面积为
时,求实数
的值.
同类题4
椭圆的两个焦点是F
1
(-1, 0), F
2
(1, 0),P为椭圆上一点,且|F
1
F
2
|是|PF
1
|与|PF
2
|的等差中项,则该椭圆方程是( )
A.
B.
C.
D.
同类题5
已知椭圆
的离心率为
,椭圆
的四个顶点围成的四边形的面积为
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
的右顶点,过点
且斜率不为0的直线
与椭圆
相交于
,
两点,记直线
,
的斜率分别为
,
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程