- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设椭圆
:
的左、右焦点分别为
,
,过
的直线交椭圆于
,
两点,若椭圆
的离心率为
,
的周长为
.
(1)求椭圆
的方程;
(2)设不经过椭圆的中心而平行于弦
的直线交椭圆
于点
,
,设弦
,
的中点分别为
,
,证明:
,
,
三点共线.











(1)求椭圆

(2)设不经过椭圆的中心而平行于弦











设
是焦距为2的椭圆
上一点,
是椭圆
的左、右顶点,直线
与
的斜率分别为
,且
.
(1)求椭圆
的方程;
(2)已知椭圆
上点
处切线方程为
,若
是直线
上任意一点,从
向椭圆
作切线,切点分别为
,求证直线
恒过定点,并求出该定点坐标.









(1)求椭圆

(2)已知椭圆









已知椭圆
的离心率为
,左、右焦点分别是
,椭圆
上短轴的一个端点与两个焦点构成的三角形的面积为
;
(1)求椭圆
的方程;
(2)过
作垂直于
轴的直线
交椭圆
于
两点(点
在第二象限),
是椭圆上位于直线
两侧的动点,若
,求证:直线
的斜率为定值.





(1)求椭圆

(2)过










如图,已知椭圆
的离心率为
,且过点
.

(I)求椭圆
的标准方程;
(II)设点
,
是椭圆
上异于顶点的任意两点,直线
,
的斜率分别为
,
且
.
①求
的值;
②设点
关于
轴的对称点为
,试求直线
的斜率.





(I)求椭圆

(II)设点








①求

②设点




已知椭圆
的一个焦点与
的焦点重合且点
为椭圆上一点
(l)求椭圆方程;
(2)过点
任作两条与椭圆
相交且关于
对称的直线,与椭圆
分别交于
、
两点,求证:直线
的斜率是定值




(l)求椭圆方程;
(2)过点







已知椭圆
经过点
,长轴长是短轴长的2倍.
(1)求椭圆
的方程;
(2)设直线
经过点
且与椭圆
相交于
两点(异于点
),记直线
的斜率为
,直线
的斜率为
,证明:
为定值,并求出该定值.


(1)求椭圆

(2)设直线










已知椭圆
离心率等于
,
、
是椭圆上的两点.
(1)求椭圆
的方程;
(2)
是椭圆上位于直线
两侧的动点.当
运动时,满足
,试问直线
的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由.




(1)求椭圆

(2)





设D是圆O:x2+y2=16上的任意一点,m是过点D且与x轴垂直的直线,E是直线m与x轴的交点,点Q在直线m上,且满足2|EQ|
|ED|.当点D在圆O上运动时,记点Q的轨迹为曲线C.
(1)求曲线C的方程.
(2)已知点P(2,3),过F(2,0)的直线l交曲线C于A,B两点,交直线x=8于点M.判定直线PA,PM,PB的斜率是否依次构成等差数列?并说明理由.

(1)求曲线C的方程.
(2)已知点P(2,3),过F(2,0)的直线l交曲线C于A,B两点,交直线x=8于点M.判定直线PA,PM,PB的斜率是否依次构成等差数列?并说明理由.
已知椭圆
与圆
:
有且仅有两个公共点,点
、
、
分别是椭圆
上的动点、左焦点、右焦点,三角形
面积的最大值是
.
(1)求椭圆
的方程;
(2)若点
在椭圆第一象限部分上运动,过点
作圆
的切线
,过点
作
的垂线
,求证:
,
交点
的纵坐标的绝对值为定值.









(1)求椭圆

(2)若点










已知椭圆
的两焦点在
轴上,且短轴的两个顶点与其中一个焦点的连线构成斜边为2的等腰直角三角形.
(1)求椭圆的方程;
(2)动直线
(
不全为零)交椭圆
于
两点,试问:在坐标平面上是否存在一个定点
,使得以线段
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由.


(1)求椭圆的方程;
(2)动直线







