- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)设椭圆
与双曲线
有相同的焦点
、
,
是椭圆
与双曲线
的公共点,且△
的周长为6,求椭圆
的方程;我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”;
(2)如图,已知“盾圆
”的方程为
,设“盾圆
”上的任意一点
到
的距离为
,
到直线
的距离为
,求证:
为定值;

(3)由抛物线弧
(
)与第(1)小题椭圆弧
(
)所合成的封闭曲线为“盾圆
”,设过点
的直线与“盾圆
”交于
、
两点,
,
,且
(
),试用
表示
,并求
的取值范围.









(2)如图,已知“盾圆











(3)由抛物线弧

















设椭圆
:
(
),左、右焦点分别是
、
且
,以
为圆心,3为半径的圆与以
为圆心,1为半径的圆相交于椭圆
上的点
(1)求椭圆
的方程;
(2)设椭圆
:
,
为椭圆
上任意一点,过点
的直线
交椭圆
于
两点,射线
交椭圆
于点
①求
的值;
②令
,求
的面积
的最大值.










(1)求椭圆

(2)设椭圆











①求

②令



如图,椭圆
的长轴长为4,离心率
,右焦点为
.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点
的直线交椭圆
于
两点,点
关于原点的对称点为
,
的重心为点
,求
面积的取值范围.




(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点








如图所示,在平面直角坐标系
中,
分别是椭圆
的左、右焦点,顶点
的坐标为
,连接
并延长交椭圆于点
,过点
作
轴的垂线交椭圆于另一点
,连接
.

(1)若点
的坐标为
,且
,求椭圆的方程;
(2)若
求椭圆离心率
的值.












(1)若点



(2)若


如图已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,且
,
.

(Ⅰ)求椭圆的方程:
(Ⅱ)设
为椭圆上异于
且不重合的两点,且
的平分线总是垂直于
轴,是否存在实数
,使得
,若存在,请求出
的最大值,若不存在,请说明理由.







(Ⅰ)求椭圆的方程:
(Ⅱ)设







已知椭圆
:
的离心率为
,椭圆的四个顶点围成的四边形的面积为4.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)直线
与椭圆
交于
,
两点,
的中点
在圆
上,求
(
为坐标原点)面积的最大值.



(Ⅰ)求椭圆

(Ⅱ)直线









已知椭圆
的一个顶点为
,离心率
,直线
交椭圆于
、
两点.
(1)若直线
的方程为
,求弦
的长;
(2)如果
的重心恰好为椭圆的右焦点
,求直线
方程的一般式.






(1)若直线



(2)如果


