刷题首页
题库
高中数学
题干
已知椭圆
:
的离心率为
,椭圆的四个顶点围成的四边形的面积为4.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)直线
与椭圆
交于
,
两点,
的中点
在圆
上,求
(
为坐标原点)面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-18 01:50:09
答案(点此获取答案解析)
同类题1
如图,
为坐标原点,椭圆
(
)的焦距等于其长半轴长,
为椭圆
的上、下顶点,且
(1)求椭圆
的方程;
(2)过点
作直线
交椭圆
于异于
的
两点,直线
交于点
.求证:点
的纵坐标为定值3.
同类题2
已知椭圆
:
,设直线
:
是椭圆
的一条切线,两点
和
在切线
上.
(1)若
,
,
,
中恰有三点在椭圆
上,求椭圆
的方程;
(2)在(1)的条件下,证明:当
,
变化时,以
为直径的圆恒过定点,并求出定点坐标.
同类题3
已知
是椭圆
的两个焦点,
为坐标原点,离心率为
,点
在椭圆上.
(1)求椭圆的标准方程;
(2)
为椭圆上三个动点,
在第二象限,
关于原点对称,且
,判断
是否存在最小值,若存在,求出该最小值,并求出此时点
的坐标,若不存在,说明理由.
同类题4
小颖用计算器探索方程ax
2
+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=﹣3.4,则方程的另一个近似根(精确到0.1)为( )
同类题5
已知椭圆
(
)的左、右焦点分别为
、
,设点
,在
中,
,周长为
.
(1)求椭圆
的方程;
(2)设不经过点
的直线
与椭圆
相交于
、
两点,若直线
与
的斜率之和为
,求证:直线
过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为
,点
为椭圆
上的一个动点,试根据
面积
的不同取值范围,讨论
存在的个数,并说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积