- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线
的焦点重合.
(1)求椭圆
的方程;
(2)斜率为
的直线过点
,且与抛物线
交于
两点,设点
,
的面积为
,求
的值;
(3)若直线
过点
,且与椭圆
交于
两点,点
关于
轴的对称点为
,直线
的纵截距为
,证明:
为定值.



(1)求椭圆

(2)斜率为








(3)若直线











已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线E:
的焦点重合,斜率为k的直线l交抛物线E于A、B两点,交椭圆
于C、D两点.
(1)求椭圆
的方程;
(2)直线l经过点
,设点
,且
的面积为
,求k的值;
(3)若直线l过点
,设直线
,
的斜率分别为
,
,且
,
,
成等差数列,求直线l的方程.




(1)求椭圆

(2)直线l经过点




(3)若直线l过点








已知点A(0,-2),椭圆E:
(a>b>0)的离心率为
,F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.



(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
设椭圆
的左、右焦点分别为
,左顶点为A,左焦点到左顶点的距离为1,离心率为
.
(1)求椭圆M的方程;
(2)过点A作斜率为k的直线与椭圆M交于另一点B,连接
并延长交椭圆M于点C.若
,求k的值.



(1)求椭圆M的方程;
(2)过点A作斜率为k的直线与椭圆M交于另一点B,连接


已知椭圆
的左、右顶点分别为
,
,上下顶点分别为
,
,左、右焦点分别为
,
,离心率为e.
(1)若
,设四边形
的面积为
,四边形
的面积为
,且
,求椭圆C的方程;
(2)若
,设直线
与椭圆C相交于P,Q两点,
分别为线段
,
的中点,坐标原点O在以MN为直径的圆上,且
,求实数k的取值范围.







(1)若






(2)若






已知椭圆E:
过点(0,1)且离心率
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.


(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
设椭圆
:
的左右焦点分别为
,
,上顶点为
.
(Ⅰ)若
.
(i)求椭圆
的离心率;
(ii)设直线
与椭圆
的另一个交点为
,若
的面积为
,求椭圆
的标准方程;
(Ⅱ)由椭圆
上不同三点构成的三角形称为椭圆的内接三角形,当
时,若以
为直角顶点的椭圆
的内接等腰直角三角形恰有3个,求实数
的取值范围.





(Ⅰ)若

(i)求椭圆

(ii)设直线






(Ⅱ)由椭圆





已知
的两个顶点
的坐标分别是
,
,且直线
的斜率之积是
.
(1)是否存在定点
,使得
为定值?
(2)设点
的轨迹为
,点
是
上互异的三点,且
关于
轴对称,
.求证:直线
恒过定点.






(1)是否存在定点


(2)设点








已知椭圆
的左右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形.
(1)求椭圆
的方程;
(2)设
是椭圆
上一点,
为椭圆长轴上一点,求
的最大值与最小值;
(3)设
是椭圆
外的动点,满足
,点
是线段
与该椭圆的交点,点
在线段
上,并且满足
,
,求点
的轨迹方程.





(1)求椭圆

(2)设




(3)设









