刷题首页
题库
高中数学
题干
已知椭圆
的左右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形.
(1)求椭圆
的方程;
(2)设
是椭圆
上一点,
为椭圆长轴上一点,求
的最大值与最小值;
(3)设
是椭圆
外的动点,满足
,点
是线段
与该椭圆的交点,点
在线段
上,并且满足
,
,求点
的轨迹方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-15 02:38:05
答案(点此获取答案解析)
同类题1
以椭圆
:
的中心
为圆心,
为半径的圆称为该椭圆的“准圆”.设椭圆
的左顶点为
,左焦点为
,上顶点为
,且满足
,
.
(1)求椭圆
及其“准圆”的方程;
(2)若椭圆
的“准圆”的一条弦
(不与坐标轴垂直)与椭圆
交于
、
两点,试证明:当
时,试问弦
的长是否为定值,若是,求出该定值;若不是,请说明理由.
同类题2
已知椭圆
的离心率为
,且椭圆上的一点与两个焦点构成的三角形周长为
.
(Ⅰ)求椭圆
的方程; (Ⅱ)已知直线
与椭圆
交于
两点,若点
的坐标为
,则
是否为定值?若是,求该定值;若不是,请说明理由.
同类题3
若点
均在椭圆
上运动,
是椭圆
的左、右焦点,则
的最大值为_________.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆方程求a、b、c
根据椭圆的有界性求范围或最值