刷题首页
题库
高中数学
题干
已知点
A
(0,-2),椭圆
E
:
(
a
>
b
>0)的离心率为
,
F
是椭圆
E
的右焦点,直线
AF
的斜率为
,
O
为坐标原点.
(1)求
E
的方程;
(2)设过点
A
的动直线
l
与
E
相交于
P
,
Q
两点.当△
OPQ
的面积最大时,求
l
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-14 10:39:35
答案(点此获取答案解析)
同类题1
已知椭圆
过点
,且两焦点与短轴的一个顶点的连线构成等腰直角三角形.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
的直线
交椭圆于
,
两点,试问:是否存在一个定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由.
同类题2
已知椭圆
,长轴在
轴上,若焦距为4,则
等于为
___________
.
同类题3
设
为椭圆
:
的下顶点,椭圆长半轴的长等于椭圆的短轴长,且椭圆
经过点
.
(1)求椭圆的方程;
(2)过点
的直线与直线
交于点
,与椭圆交于
,点
关于原点的对称点为
,直线
交直线
交于点
,求
的最小值.
同类题4
顺次连接椭圆
的四个顶点恰好构成了一个边长为
且面积为
的菱形.
(1)求椭圆
的标准方程;
(2)设直线
与椭圆
相切于点
,过点
作
,垂足为
,求
面积的最大值.
同类题5
已知椭圆
的中心为坐标原点,右焦点为
,
、
分别是椭圆
的左、右顶点,
是椭圆
上异于
、
的动点,且
面积最大值为
.
(1)求椭圆
的方程;
(2)是否存在一定点
(
),使得过定点
的直线
与曲线
相交于
、
两点,且
为定值?若存在,求出定点和定值,若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积