- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求平面轨迹方程
- 立体几何中的轨迹问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
是圆
上任意一点,点
与点
关于原点对称,线段
的垂直平分线分别与
,
交于
,
两点.
(1)求点
的轨迹
的方程;
(2)过点
的动直线
与点
的轨迹
交于
,
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出点
的坐标;若不存在,请说明理由.









(1)求点


(2)过点










已知一动点
,
到点
的距离减去它到
轴距离的差都是
.
(
)求动点
的轨迹方程.
(
)设动点
的轨迹为
,已知定点
、
,直线
、
与轨迹
的另一个交点分别为
、
.
(i)点
能否为线段
的中点,若能,求出直线
的方程,若不能,说明理由.
(ii)求证:直线
过定点.





(


(










(i)点



(ii)求证:直线

(2018衡水金卷(二))如图,矩形
中,
且
,
交
于点
.

(I)若点
的轨迹是曲线
的一部分,曲线
关于
轴、
轴、原点都对称,求曲线
的轨迹方程;
(II)过点
作曲线
的两条互相垂直的弦
,四边形
的面积为
,探究
是否为定值?若是,求出此定值,若不是,请说明理由.







(I)若点






(II)过点






已知点,点
为平面上动点,过点
作直线
的垂线,垂足为
,且
.

(2)过点










已知两点A(-
,0),B(
,0),动点P在y轴上的投影是Q,且
.
(1)求动点P的轨迹C的方程;
(2)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.



(1)求动点P的轨迹C的方程;
(2)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.
已知双曲线
的左、右顶点分别为
,直线
与双曲线交于
,直线
交直线
于点
.
(1)求点
的轨迹方程;
(2)若点
的轨迹与矩形
的四条边都相切,探究矩形
对角线长是否为定值,若是,求出此值;若不是,说明理由.







(1)求点

(2)若点




如图,已知椭圆
的长轴长AB,C为圆
上非
轴上的一动点,线段CA,CB与椭圆M分别交于点D,E线段EA与DB相交于点



A.![]() (1)当点C在 ![]() ![]() ![]() (2)求证:直线AF与BF的斜率之积为定值,并求点F的轨迹方程. |
已知点
与
的距离和它到直线
的距离的比是常数
.
求点M的轨迹C的方程;
设N是圆E:
上位于第四象限的一点,过N作圆E的切线
,与曲线C交于A,B两点
求证:
的周长为10.










在平面直角坐标系
中,点
是圆
:
上的动点,定点
,线段
的垂直平分线交
于
,记
点的轨迹为
.
(Ⅰ)求轨迹
的方程;
(Ⅱ)若动直线
:
与轨迹
交于不同的两点
、
,点
在轨迹
上,且四边形
为平行四边形.证明:四边形
的面积为定值.










(Ⅰ)求轨迹

(Ⅱ)若动直线








