- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为F,过点F的直线与抛物线C相交于P,Q两点,与y轴交于A点,若
, O为坐标原点,则
OPQ的面积为( )



A.![]() | B.![]() | C.![]() | D.4 |
已知点
在椭圆
上,直线
与x,y轴分别交于A,B两点,0为坐标原点,且△OAB 的面积的最小值为

(1)求椭圆
的离心率;
(2) 设点C、D、F2分别为椭圆
的上、下顶点以及右焦点,E 为线段OD 的中点,直线F2E 与椭圆
相交于M、N 两点,若
,求椭圆
的方程.





(1)求椭圆

(2) 设点C、D、F2分别为椭圆




在平面直角坐拯系
中,
的离心率为
,且点
在此椭圆上.
(1)求椭圆
的标准方程;
(2)设宜线
与圆
相切于第一象限内的点
,且
与椭圆
交于
.两点.若
的面积为
,求直线
的方程.




(1)求椭圆

(2)设宜线









已知抛物线
上一点A(2,a)到其焦点的距离为3.
(1) 求抛物线C的方程;
(2) 过点(4,0)的直线与抛物线C交于P、Q两点,0为坐标原点,证明: ∠POQ=90°.

(1) 求抛物线C的方程;
(2) 过点(4,0)的直线与抛物线C交于P、Q两点,0为坐标原点,证明: ∠POQ=90°.
椭圆
过点
,左焦点为F,
与y轴交于点Q,且满足
.
(1)求椭圆
的方程;
(2)设直线
过F,且与椭圆C交于不同点
,设
,且
时,求弦长
的范围.




(1)求椭圆

(2)设直线




