- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左、右焦点分别为
、
,左顶点为A,离心率为
,点B是椭圆上的动点,
的面积的最大值为
.
(1)求椭圆E的方程;
(2)过点
的直线l与椭圆E相交于C、D两点,求
的最大值.






(1)求椭圆E的方程;
(2)过点


已知直线
过椭圆
的右焦点
,抛物线
的焦点为椭圆
的上顶点,且
交椭圆
于
两点,点
在直线
上的射影依次为
.
(1)求椭圆
的方程;
(2)若直线
交
轴于点
,且
,当
变化时,证明:
为定值;
(3)当
变化时,直线
与
是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.











(1)求椭圆

(2)若直线






(3)当


