- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率为
,短轴长为
.

(1)求
的方程;
(2)如图,经过椭圆左顶点
且斜率为
的直线
与
交于
两点,交
轴于点
,点
为线段
的中点,若点
关于
轴的对称点为
,过点
作
(
为坐标原点)垂直的直线交直线
于点
,且
面积为
,求
的值.




(1)求

(2)如图,经过椭圆左顶点




















已知椭圆
经过点
离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)经过椭圆左焦点
的直线(不经过点
且不与
轴重合)与椭圆交于
两点,与直线
:
交于点
,记直线
的斜率分别为
.则是否存在常数
,使得向量
共线?若存在求出
的值;若不存在,说明理由.



(Ⅰ)求椭圆的方程;
(Ⅱ)经过椭圆左焦点













已知中心在原点的椭圆和双曲线有共同的左、右焦点
、
,两曲线在第一象限的交点为
,
是以
为底边的等腰三角形,若
,椭圆和双曲线的离心率分别为
、
,则
的取值范围是( )









A.![]() | B.![]() | C.![]() | D.![]() |
在平面直角坐标系
中,
是椭圆
:
上的点,过点
的直线的方程为
.
(1)求椭圆
的离心率;
(2)当
时,
(i)设直线
与
轴、
轴分别相交于
,
两点,求
的最小值;
(ii)设椭圆
的左、右焦点分别为
,
,点
与点
关于直线
对称,求证:点
,
,
三点共线.






(1)求椭圆

(2)当

(i)设直线






(ii)设椭圆








