刷题宝
  • 刷题首页
题库 高中数学

题干

在平面直角坐标系中,是椭圆:上的点,过点的直线的方程为.
(1)求椭圆的离心率;
(2)当时,
(i)设直线与轴、轴分别相交于,两点,求的最小值;
(ii)设椭圆的左、右焦点分别为,,点与点关于直线对称,求证:点,,三点共线.
上一题 下一题 0.99难度 解答题 更新时间:2020-02-18 01:41:16

答案(点此获取答案解析)

同类题1

已知点,过点作抛物线的切线,切点在第二象限.

求切点的纵坐标;
有一离心率为的椭圆恰好经过切点,设切线与椭圆的另一交点为点,记切线的斜率分别为,,,若,求椭圆的方程.

同类题2

已知是椭圆的两个焦点,P为C上一点,O为坐标原点.
(1)若为等边三角形,求C的离心率;
(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.

同类题3

已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好在抛物线的准线上.

求椭圆的标准方程;
点,在椭圆上,是椭圆上位于直线两侧的动点当运动时,满足,试问直线的斜率是否为定值,请说明理由.

同类题4

已知分别是双曲线的左、右焦点,若点关于直线的对称点恰好落在以为圆心,为半径的圆上,则双曲线的离心率为 (  )
A.B.C.D.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 求椭圆的离心率或离心率的取值范围
  • 椭圆中三角形(四边形)的面积
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)