- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 面面垂直证线面垂直
- + 空间垂直的转化
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示的几何体中,四边形
为正方形,AD∥B
,平面ABC⊥平面BC
,AB=AC=
,AD=1,∠ABC=45°.

(1)求证:AB⊥CD;
(2)求点C到平面D
的距离.





(1)求证:AB⊥CD;
(2)求点C到平面D

如图,在△ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;类似地有命题:在三棱锥A-BCD中,AD⊥平面ABC,若A点在平面BCD内的射影为M,则有S=S△BCM·S△BCD.上述命题是 ( )
A.真命题 |
B.增加条件“AB⊥AC”才是真命题 |
C.增加条件“M为△BCD的垂心”才是真命题 |
D.增加条件“三棱锥A-BCD是正三棱锥”才是真命题 |
四棱锥
中,已知
平面PAD,
,
,E为棱PC上的一点,经过A,B,E三点的平面与棱PD相交于点F.
求证:
平面PAD;
求证:
;
若平面
平面PCD,求证:
.











