- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面垂直证明线线平行
- + 线面垂直证明线线垂直
- 线面垂直证明面面平行
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥
中,PA⊥平面ABCD,CD⊥AD,BC∥AD,
.

(Ⅰ)求证:CD⊥PD;
(Ⅱ)求证:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.



(Ⅰ)求证:CD⊥PD;
(Ⅱ)求证:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.
如图,在三棱柱
中,各个侧面均是边长为
的正方形,
为线段
的中点.

(1)求证:直线
平面
;
(2)求直线
与平面
所成角的余弦值;
(3)设
为线段
上任意一点,在
内的平面区域(包括边界)是否存在点
,使
,并说明理由.





(1)求证:直线


(2)求直线


(3)设





如图,直角梯形
与等腰直角三角形
所在的平面互相垂直.
,
,
.

(1)求证:
;
(2)求证:平面
平面
;
(3)线段
上是否存在点
,使
平面
?若存在,求出
的值;若不存在,说明理由.







(1)求证:

(2)求证:平面


(3)线段




