- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面垂直证明线线平行
- + 线面垂直证明线线垂直
- 线面垂直证明面面平行
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,在四棱锥
中,底面四边形
为正方形,已知
平面
,
,
.

(1)证明:
;
(2)求
与平面
所成角的正弦值;
(3)在棱
上是否存在一点
,使得平面
平面
?若存在,求
的值并证明,若不存在,说明理由.







(1)证明:

(2)求


(3)在棱





如图,在正方体
中,点
是线段
上的动点,则下列说法错误的是( )





A.当点![]() ![]() ![]() ![]() ![]() |
B.无论点![]() ![]() ![]() |
C.当点![]() ![]() ![]() ![]() ![]() ![]() |
D.无论点![]() ![]() ![]() ![]() ![]() |
如图,在三棱锥D﹣ABC中,O为线段AC上一点,平面ADC⊥平面ABC,且△ADO,△ABO为等腰直角三角形,斜边AO=4
.

(Ⅰ)求证:AC⊥BD;
(Ⅱ)将△BDO绕DO旋转一周,求所得旋转体的体积.


(Ⅰ)求证:AC⊥BD;
(Ⅱ)将△BDO绕DO旋转一周,求所得旋转体的体积.
已知在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ)求证:D1E⊥A1D;
(Ⅱ)在棱AB上是否存在点E使得AD1与平面D1EC成的角为
?若存在,求出AE的长,若不存在,说明理由.
(Ⅰ)求证:D1E⊥A1D;
(Ⅱ)在棱AB上是否存在点E使得AD1与平面D1EC成的角为


如图,四棱柱ABCD-
中,地面ABCD为直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB
,∠BA
=60°,AB=A
=2BC=2CD=2

(1)求证:BC⊥A
;
(2)求二面角D-A
-B的余弦值;
(3)在线段D
上是否存在点M,使得CM∥平面DA
?若存在,求
的值;若不存在,请说明理由.





(1)求证:BC⊥A

(2)求二面角D-A

(3)在线段D


