- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面垂直证明线线平行
- + 线面垂直证明线线垂直
- 线面垂直证明面面平行
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知平行四边形
中,
,
,
为边
的中点,将
沿直线
翻折成
.若
为线段
的中点,则在
翻折过程中,有下列三个命题:

①线段
的长是定值;
②存在某个位置,使
;
③存在某个位置,使
平面
.
其中正确的命题有______. (填写所有正确命题的编号)












①线段

②存在某个位置,使

③存在某个位置,使


其中正确的命题有______. (填写所有正确命题的编号)
如图所示,直线PA垂直于
所在的平面,
内接于
,且AB为
的直径,点M为线段PB的中点,点Q是线段PC上异于端点的动点.现有结论:①
;②
平面APC;③点B到平面PAC的距离等于线段BC的长;④异面直线BC与AQ所成的角为定值.其中正确的是( )








A.①② | B.①②③④ | C.① | D.②③ |
如图,M、N分别是边长为1的正方形ABCD的边BC、CD的中点,将正方形沿对角线AC折起,使点D不在平面ABC内,则在翻折过程中,有以下结论:

①异面直线AC与BD所成的角为定值.
②存在某个位置,使得直线AD与直线BC垂直.
③存在某个位置,使得直线MN与平面ABC所成的角为45°.
④三棱锥M-ACN体积的最大值为
.
以上所有正确结论的序号是__________.

①异面直线AC与BD所成的角为定值.
②存在某个位置,使得直线AD与直线BC垂直.
③存在某个位置,使得直线MN与平面ABC所成的角为45°.
④三棱锥M-ACN体积的最大值为

以上所有正确结论的序号是__________.
如图,四棱锥S-ABCD的底面是边长为2的正方形,每条侧棱的长都是底面边长的
倍,P为侧棱SD上的点.

(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小.


(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小.