- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面垂直证明线线平行
- + 线面垂直证明线线垂直
- 线面垂直证明面面平行
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知四棱锥
的直观图如图所示,其中
,
,
两两垂直,
,且底面
为平行四边形.

(1)证明:
.
(2)如图,网格纸上小正方形的边长为1,粗线画出的是该四棱锥的正视图与俯视图,请在网格纸上用粗线画出该四棱锥的侧视图,并求四棱锥
的体积.







(1)证明:

(2)如图,网格纸上小正方形的边长为1,粗线画出的是该四棱锥的正视图与俯视图,请在网格纸上用粗线画出该四棱锥的侧视图,并求四棱锥

已知四棱锥
(图)的三视图如图所示.


(1)求这个四棱锥的表面积及体积.
(2)求证:
.
(3)在线段PD上是否存在一点Q,使得二面角
的平面角为
?若存在,试求
的值;
若不存在,请说明理由.



(1)求这个四棱锥的表面积及体积.
(2)求证:

(3)在线段PD上是否存在一点Q,使得二面角



若不存在,请说明理由.
一个几何体是由圆柱










(1)求证:

(2)求二面角


棱长为1的正方体
中,
为线段
上的动点,则下列结论正确的有
①三棱锥
的体积为定值; ②
;③
的最大值为
; ④
的最小值为2



①三棱锥





A.①② | B.①②③ | C.③④ | D.①②④ |
在三棱锥SABC中,△ABC是边长为6的正三角形,SA=SB=SC=12,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,且它们分别是AB,BC,SC,SA的中点,那么四边形DEFH的面积为( )


A.18 | B.18![]() | C.36 | D.36![]() |
如果三棱锥A-BCD的底面BCD是正三角形,顶点A在底面BCD上的射影是△BCD的中心,则这样的三棱锥称为正三棱锥.给出下列结论:
①正三棱锥所有棱长都相等;
②正三棱锥至少有一组对棱(如棱AB与CD)不垂直;
③当正三棱锥所有棱长都相等时,该棱锥内任意一点到它的四个面的距离之和为定值;
④若正三棱锥所有棱长均为2
,则该棱锥外接球的表面积等于12π.
⑤若正三棱锥A-BCD的侧棱长均为2,一个侧面的顶角为40°,过点B的平面分别交侧棱AC,AD于M,N.则△BMN周长的最小值等于2
.
以上结论正确的是______ (写出所有正确命题的序号).
①正三棱锥所有棱长都相等;
②正三棱锥至少有一组对棱(如棱AB与CD)不垂直;
③当正三棱锥所有棱长都相等时,该棱锥内任意一点到它的四个面的距离之和为定值;
④若正三棱锥所有棱长均为2

⑤若正三棱锥A-BCD的侧棱长均为2,一个侧面的顶角为40°,过点B的平面分别交侧棱AC,AD于M,N.则△BMN周长的最小值等于2

以上结论正确的是