- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面垂直的判定
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- + 二面角
- 二面角的概念及辨析
- 求二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从空间一点P向二面角α-l-β的两个面α,β分别作垂线PE,PF,E,F为垂足,若∠EPF=60°,则二面角α-l-β的平面角的大小是( )
A.60° | B.120° |
C.60°或120° | D.不确定 |
(陕西省渭南市2018届高三教学质量检测(I))二面角的棱上有
,
两点,直线
,
分别在这个二面角的两个半平面内,且都垂直于
,已知
,
,
,
,则该二面角的大小为









A.![]() | B.![]() |
C.![]() | D.![]() |
如图,直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD的长为________ .

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)求AE等于何值时,二面角D1-EC-D的大小为45°?
(1)证明:D1E⊥A1D;
(2)求AE等于何值时,二面角D1-EC-D的大小为45°?

在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,且AB=2,若平面A1BD和平面ABCD所成的二面角为45°,则A1A=________.
二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=2,AC=3,BD=4,CD=
,则该二面角的大小为( )

A.45° | B.60° |
C.120° | D.150° |