- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面是否垂直
- 证明线面垂直
- + 补全线面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,
是半圆
的直径,
,
为圆周上一点,
平面
,
,
,
,
.

(1)求证:平面
平面
;
(2)在线段
上是否存在点
,且使得
平面
?若存在,求出点
的位置;若不存在,请说明理由.











(1)求证:平面


(2)在线段





如图,在四棱锥P—ABCD中,ABCD是正方形,PD⊥平面ABCD.PD=AB=2,E,F,G分别是PC,PD,BC的中点.

(1)求证:平面PAB∥平面EFG;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明.

(1)求证:平面PAB∥平面EFG;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明.
如图,在长方体ABCD-
中,面
棱
,
分别交于点M,N,且M,N均为中点.

(1)求证:AC∥平面
;
(2)若AD=CD=2,
,O为AC的中点,
上是否存在动点F,使得OF⊥平面
?若存在,求出点F的位置,并加以证明;若不存在,说明理由.





(1)求证:AC∥平面

(2)若AD=CD=2,



已知平面
和直线
,给出以下条件:(1)
;(2)
;(3)
;(4)
;(5)
,当条件______成立时,有
;当条件_______成立时,有
(填所选条件的序号)









正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E—DF—C的余弦值;
(III)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论。
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E—DF—C的余弦值;
(III)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论。

四棱锥S-ABCD中的底面是菱形,∠BAD=60°,SD⊥底面ABCD,SD=AB=2,E、F分别为SB、CD的中点.
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)点P是SB上一点,若SB⊥平面APC,试确定点P的位置.
(Ⅰ)求证:EF∥平面SAD;
(Ⅱ)点P是SB上一点,若SB⊥平面APC,试确定点P的位置.

已知平面
,
和直线
,给出下列五个条件:
①
;②
;③
;④
;⑤
.
(1)当满足条件__________时,有
;
(2)当满足条件__________时,有
.(填所选条件的序号)



①





(1)当满足条件__________时,有

(2)当满足条件__________时,有
