- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面是否垂直
- 证明线面垂直
- + 补全线面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设点E,F分别是棱长为2的正方体
的棱AB,
的中点.如图,以C为坐标原点,射线CD、CB、
分别是x轴、y轴、z轴的正半轴,建立空间直角坐标系.

(1)求向量
与
的数量积;
(2)若点M,N分别是线段
与线段
上的点,问是否存在直线MN,
平面ABCD?若存在,求点M,N的坐标;若不存在,请说明理由.




(1)求向量


(2)若点M,N分别是线段



如图,在直角梯形
中,
,
,
,直角梯形
可以通过直角梯形
以直线
为轴旋转得到,且平面
平面
.

(1)求证:
;
(2)设
、
分别为
、
的中点,
为线段
上的点(不与点
重合).
(i)若平面
平面
,求
的长;
(ii)线段
上是否存在
,使得直线
平面
,若存在求
的长,若不存在说明理由.










(1)求证:

(2)设







(i)若平面



(ii)线段





如图1,在△
中,
,
分别为
,
的中点,
为
的中点,
,
.将△
沿
折起到△
的位置,使得平面
平面
,
为
的中点,如图2.

(1)求证:
平面
;
(2)求证:平面
平面
;
(3)线段
上是否存在点
,使得
平面
?说明理由.

















(1)求证:


(2)求证:平面


(3)线段




如图,在棱长为
的正方体
中,
,
,
分别是棱
、
和
所在直线上的动点:

(1)求
的取值范围:
(2)若
为面
内的一点,且
,
,求
的余弦值:
(3)若
、
分别是所在正方形棱的中点,试问在棱
上能否找到一点
,使
平面
?若能,试确定点
的位置,若不能,请说明理由.









(1)求

(2)若





(3)若






