- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面是否垂直
- + 证明线面垂直
- 补全线面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在直角梯形
中,
//
,
⊥
,
⊥
, 点
是
边的中点, 将△
沿
折起,使平面
⊥平面
,连接
,
,
, 得到如图所示的几何体.


















(Ⅰ)求证:⊥平面
;
(Ⅱ)若,
,求二面角
的大小.


如图,正方形与梯形所在平面互相垂直,,点在线段上且不与重合.

(Ⅰ)当点是中点时,求证:平面;
(Ⅱ)当平面与平面所成锐二面角的余弦值为时,求三棱锥的体积.

(Ⅰ)当点是中点时,求证:平面;
(Ⅱ)当平面与平面所成锐二面角的余弦值为时,求三棱锥的体积.
如图,在三棱锥
中,
平面
,
,
,
为
的中点.

(1)求证:
⊥平面
;
(2)若动点
满足
∥平面
,问:当
时,平面
与平面
所成的锐二面角是否为定值?若是,求出该锐二面角的余弦值;若不是,说明理由.








(1)求证:


(2)若动点






已知直角梯形
中,
是边长为2的等边三角形,
.沿
将
折起,使
至
处,且
;然后再将
沿
折起,使
至
处,且面
面
,
和
在面
的同侧.


(Ⅰ) 求证:
平面
;
(Ⅱ) 求平面
与平面
所构成的锐二面角的余弦值.



















(Ⅰ) 求证:


(Ⅱ) 求平面


如图,在四棱柱
中,侧棱
底面
,

(Ⅰ)求证:
平面
(Ⅱ)若直线
与平面
所成角的正弦值为
,求
的值
(Ⅲ)现将与四棱柱
形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为
,写出
的解析式.(直接写出答案,不必说明理由)





(Ⅰ)求证:


(Ⅱ)若直线




(Ⅲ)现将与四棱柱



如图,正三棱锥
的三条侧棱
、
、
两两垂直,且长度均为2.
、
分别是
、
的中点,
是
的中点,过
的平面与侧棱
、
、
或其延长线分别相交于
、
、
,已知
.
(1)求证:
⊥面
;
(2)求二面角
的大小.


















(1)求证:


(2)求二面角

