- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面是否垂直
- + 证明线面垂直
- 补全线面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在如图所示的几何体中,四边形
是菱形,四边形
是矩形,平面
平面
,
,
,
,
为
的中点,
为线段
上的一点.

(1)求证:
;
(2)若二面角
的大小为
,求
的值.












(1)求证:

(2)若二面角



如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E、F分别为DD1、DB的中点.

(1)求证:EF∥平面ABC1D1;
(2)求三棱锥E﹣FCB1的体积.

(1)求证:EF∥平面ABC1D1;
(2)求三棱锥E﹣FCB1的体积.
如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.

(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.
如图,在四棱锥P﹣ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,PA=1,点M是棱PC上的一点,且AM⊥PB.

(1)求三棱锥C﹣PBD的体积;
(2)证明:AM⊥平面PBD.

(1)求三棱锥C﹣PBD的体积;
(2)证明:AM⊥平面PBD.