- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间点、直线、平面之间的位置关系
- 直线、平面平行的判定与性质
- + 直线、平面垂直的判定与性质
- 线面垂直的判定
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- 面面垂直的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,四棱锥P-ABCD中, PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,
,连接CE并延长交AD于F.
(Ⅰ)求证:AD⊥CG;
(Ⅱ)求平面BCP与平面DCP的夹角的余弦值.

(Ⅰ)求证:AD⊥CG;
(Ⅱ)求平面BCP与平面DCP的夹角的余弦值.

如图1,在平行四边形
中,
,
,
,
、
分别为
、
的中点,现把平行四边形
1沿
折起如图2所示,连接
、
、
.
(1)求证:
;
(2)若
,求二面角
的正弦值.














(1)求证:

(2)若



在如图所示的多面体
中,底面四边形
是菱形,
,
,
相交于
,
,
在平面
上的射影恰好是线段
的中点
.

(Ⅰ)求证:
平面
;
(Ⅱ)若直线
与平面
所成的角为
,求平面
与平面
所成锐二面角的余弦值.












(Ⅰ)求证:


(Ⅱ)若直线





如图2,在三棱锥A-BCD中,AB=CD=4, AC=BC=AD=BD=3.
(I)证明:AB
CD;
(II) E在线段BC上,BE=2EC, F是线段AC的中点,求平面ADE与平面BFD所成锐二面角的余弦值
(I)证明:AB

(II) E在线段BC上,BE=2EC, F是线段AC的中点,求平面ADE与平面BFD所成锐二面角的余弦值

如图,在三棱柱ABC-DEF中,AE与BD相交于点O,C在平面ABED内的射影为O,G为CF的中点

(1)求证平由ABED⊥平面GED
(2)若AB=BD=BE=EF=2,求二面角A-CE-B的余弦值

(1)求证平由ABED⊥平面GED
(2)若AB=BD=BE=EF=2,求二面角A-CE-B的余弦值