刷题宝
  • 刷题首页
题库 高中数学

题干

如图2,在三棱锥A-BCD中,AB=CD=4, AC=BC=AD=BD=3.
(I)证明:ABCD;
(II) E在线段BC上,BE=2EC, F是线段AC的中点,求平面ADE与平面BFD所成锐二面角的余弦值
上一题 下一题 0.99难度 解答题 更新时间:2018-03-23 07:29:27

答案(点此获取答案解析)

同类题1

如图,已知垂直于以为直径的圆所在平面,点在线段上,点为圆上一点,且

(Ⅰ) 求证:
(Ⅱ) 求二面角余弦值.

同类题2

如图,在四棱锥P一ABCD中,平面PAB⊥平面ABCD, AB⊥BC, AD//BC, AD=3,PA=BC=2AB=2,
PB=.
(Ⅰ)求证:BC⊥PB;
(Ⅱ)求二面角P一CD一A的余弦值;
(Ⅲ)若点E在棱PA上,且BE//平面PCD,求线段BE的长.

同类题3

(2017·泰安模拟)如图,在正四棱柱ABCD­A1B1C1D1中,E为AD的中点,F为B1C1的中点.
(1)求证:A1F∥平面ECC1;
(2)在CD上是否存在一点G,使BG⊥平面ECC1?若存在,请确定点G的位置,并证明你的结论,若不存在,请说明理由.

同类题4

已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长为的正方形,△ABE和△BCF均为正三角形,在三棱锥中:
(I)证明:平面平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若点在棱上,满足,,点在棱上,且,求的取值范围.

同类题5

如图,在三棱锥中,底面ABC,,D,E,分别为PB,PC的中点.

Ⅰ求证:平面ADE;
Ⅱ求证:平面PAB.
相关知识点
  • 空间向量与立体几何
  • 点、直线、平面之间的位置关系
  • 直线、平面垂直的判定与性质
  • 线面垂直的判定
  • 证明线面垂直
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)