- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- + 证明线面平行
- 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,
为正三角形,且侧面PAB⊥底面ABCD,
为线段
的中点,
在线段
上.

(I)当
是线段
的中点时,求证:PB // 平面ACM;
(II)求证:
;
(III)是否存在点
,使二面角
的大小为60°,若存在,求出
的值;若不存在,请说明理由.






(I)当


(II)求证:

(III)是否存在点



如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,
为正三角形,且侧面PAB⊥底面ABCD. E,M分别为线段AB,PD的中点.

(I)求证:PE⊥平面ABCD;
(II)求证:PB//平面ACM;
(III)在棱CD上是否存在点G,使平面GAM⊥平面ABCD,请说明理由.


(I)求证:PE⊥平面ABCD;
(II)求证:PB//平面ACM;
(III)在棱CD上是否存在点G,使平面GAM⊥平面ABCD,请说明理由.
如图,在三棱柱
中,
平面
.
,
,
,
,
分别为
和
的中点,
为侧棱
上的动点.
(
)求证:平面
平面
.
(
)若
为线段
的中点,求证:
平面
.
(
)试判断直线
与平面
是否能够垂直.若能垂直,求
的值,若不能垂直,请说明理由.













(



(





(




在三棱锥
中,平面
平面
,
,
,
为
的中点,
为
的中点,
在棱
上.

(
)当
为
的中点时,证明:
平面
.
(
)求证:
平面
.
(
)是否存在点
使得
平面
?若存在,求出
的值,若不存在,说明理由.












(





(



(





如图,已知点
分别是Δ
的边
的中点,连接
.现将
沿
折叠至Δ
的位置,连接
.记平面
与平面
的交线为
,二面角
大小为
.


(1)证明:
(2)证明:
(3)求平面
与平面
所成锐二面角大小.















(1)证明:

(2)证明:

(3)求平面

