- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- + 证明线面平行
- 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在三棱锥
中,
底面
,
.点
、
、
分别为棱
、
、
的中点,
是线段
的中点,
,
.

(1)求证:
平面
;
(2)求二面角
的正弦值;
(3)已知点
在棱
上,且直线
与直线
所成角的余弦值为
,求线段
的长.















(1)求证:


(2)求二面角

(3)已知点






如图,已知
为等边三角形,
为等腰直角三角形,
.平面
平面ABD,点E与点D在平面ABC的同侧,且
,
.点F为AD中点,连接EF.

(1)求证:
平面ABC;
(2)求证:平面
平面ABD.







(1)求证:

(2)求证:平面

如图1,在等腰
中,
,
,
分别为
,
的中点,
为
的中点,
在线段
上,且
。将
沿
折起,使点
到
的位置(如图2所示),且
。

(1)证明:
平面
;
(2)求平面
与平面
所成锐二面角的余弦值

















(1)证明:


(2)求平面


如图,在四棱锥S﹣ABCD中,底面ABCD是边长为2的正方形,SA=SB=SC=SD
,点E,M,N分别是BC,CD,SC的中点,点P是MN上的一点.

(1)证明:EP∥平面SBD;
(2)求四棱锥S﹣ABCD的表面积.


(1)证明:EP∥平面SBD;
(2)求四棱锥S﹣ABCD的表面积.