- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面平行
- + 证明线面平行
- 补全线面平行的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知四面体ABCD的四个面均为锐角三角形,E、F、G、H分别为边AB、BC、CD、DA上的点,BD∥平面EFGH,且EH=FG.

(1) 求证:HG∥平面ABC;
(2) 请在面ABD内过点E作一条线段垂直于AC,并给出证明.

(1) 求证:HG∥平面ABC;
(2) 请在面ABD内过点E作一条线段垂直于AC,并给出证明.
如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2.
(I)求证:AF∥平面BDE;
(Ⅱ)求二面角B﹣DE﹣C的余弦值.
(I)求证:AF∥平面BDE;
(Ⅱ)求二面角B﹣DE﹣C的余弦值.

四棱锥P—ABCD中,底面ABCD是矩形,PA
底面ABCD,PA=" AB" =1,AD =2,点M是PB的中点,点N在BC边上移动.

(I)求证:当N是BC边的中点时,MN∥平面PAC;
(Ⅱ)证明,无论N点在BC边上何处,都有PN
AM;
(Ⅲ)当BN等于何值时,PA与平面PDN所成角的大小为45
.


(I)求证:当N是BC边的中点时,MN∥平面PAC;
(Ⅱ)证明,无论N点在BC边上何处,都有PN

(Ⅲ)当BN等于何值时,PA与平面PDN所成角的大小为45

在正方体




(1)求直线


(2)在棱





(本小题满分14分)如图,四棱锥P—ABCD的底面是边长为1的正方形,PD^底面ABCD,PD=AD,E为PC的中点,F为PB上一点,且EF^PB.

(1)证明:PA//平面EDB;
(2)证明:AC^DF;
(3)求平面ABCD和平面DEF所成二面角的余弦值.

(1)证明:PA//平面EDB;
(2)证明:AC^DF;
(3)求平面ABCD和平面DEF所成二面角的余弦值.