刷题首页
题库
高中数学
题干
(本小题满分14分)如图,四棱锥P—ABCD的底面是边长为1的正方形,PD^底面ABCD,PD=AD,E为PC的中点,F为PB上一点,且EF^PB.
(1)证明:PA//平面EDB;
(2)证明:AC^DF;
(3)求平面ABCD和平面DEF所成二面角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2015-05-20 09:55:47
答案(点此获取答案解析)
同类题1
如图,在三棱锥
中,
,平面
平面
分别为
中点.
(1)求证:
平面
;
(2)求证:平面
平面
.
同类题2
如图,在四棱锥
中,底面
是矩形,
平面
,
,点
、
分别在线段
、
上,且
,其中
,连接
,延长
与
的延长线交于点
,连接
.
(Ⅰ)求证:
平面
;
(Ⅱ)若
时,求二面角
的正弦值;
(Ⅲ)若直线
与平面
所成角的正弦值为
时,求
值.
同类题3
如图,长方体
中,
,
,
为
的中点.
(1)求三棱锥
的体积.
(2)
边上是否存在一点
,使得
平面
?
若存在,求出
的长;若不存在,请说明理由.
同类题4
如图,等腰梯形
中,
,
,
,
,
为
的中点,矩形
所在的平面和平面
互相垂直.
(
)求证:
平面
.
(
)设
的中点为
,求证:
平面
.
(
)求三棱锥
的体积.(只写出结果,不要求计算过程)
同类题5
如图,在四棱锥
P
﹣
ABCD
中,
PA
⊥平面
ABCD
,∠
ABC
=∠
BAD
=90°,
AD
=
AP
=4,
AB
=
BC
=2,
M
为
PC
的中点点
N
在线段
AD
上.
(1)点
N
为线段
AD
的中点时,求证:直线
PA
∥面
BMN
;
(2)若直线
MN
与平面
PBC
所成角的正弦值为
,求二面角
C
﹣
BM
﹣
N
所成角θ的余弦值.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行