刷题首页
题库
高中数学
题干
在直三棱柱
ABC
-
A
1
B
1
C
1
中,
AB
=
AC
,
E
是
BC
的中点,求证:
(Ⅰ)平面
AB
1
E
⊥平面
B
1
BCC
1
;
(Ⅱ)
A
1
C
//平面
AB
1
E
.
上一题
下一题
0.99难度 解答题 更新时间:2017-10-08 02:39:28
答案(点此获取答案解析)
同类题1
如图,四棱锥
S
﹣
ABCD
中,
M
是
SB
的中点,
AB
∥
CD
,
BC
⊥
CD
,且
AB
=
BC
=2,
CD
=
SD
=1,又
SD
⊥面
SAB
.
(1)证明:
CD
⊥
SD
;
(2)证明:
CM
∥面
SAD
;
(3)求四棱锥
S
﹣
ABCD
的体积.
同类题2
如图,矩形ABCD所在的平面与平面AEB垂直,且∠ BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点.
(1)求证:直线DE与平面FGH平行;
(2)若点P在直线GF上,且二面角D-BP-A的大小为
,试确定点P的位置.
同类题3
如图,在三棱柱
中,四边形
是边长为
的正方形,平面
平面
,
,
.
(
)求证:
平面
.
(
)若点
是线段
的中点,请问在线段
是否存在点
,使得
平面
?若存在,请说明点
的位置,并给出证明;若不存在,请说明理由.
同类题4
如图,在四棱锥
中,底面
为直角梯形,
,
,平面
底面ABCD,Q为AD的中点,M是棱
上的点,
(Ⅰ)若
是棱
的中点,求证:
;
(Ⅱ)若二面角
的大小为
,试求
的值.
同类题5
如图所示,在三棱锥
P
-
ABC
中,平面
PAC
⊥平面
ABC
,
PA
⊥
AC
,
AB
⊥
BC
.设
D
,
E
分别为
PA
,
AC
的中点.
(1)求证:
DE
∥平面
PBC
;
(2)在线段
AB
上是否存在点
F
,使得过三点
D
,
E
,
F
的平面内的任一条直线都与平面
PBC
平行?若存在,指出点
F
的位置并证明;若不存在,请说明理由.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
线面平行的判定
证明线面平行
面面垂直的判定