- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面
- 平面的基本性质
- + 平行公理
- 异面直线
- 异面直线所成的角
- 线面关系
- 面面关系
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(2015秋•赤峰期末)m,n,l为不重合的直线,α,β,γ为不重合的平面,则下列说法正确的是( )
A.α∥γ,β∥γ,则α∥β |
B.α⊥γ,β⊥γ,则α⊥β |
C.m∥α,n∥α,则m∥n |
D.m⊥l,n⊥l,则m∥n |
(2015秋•赤峰期末)如图,在正方体ABCD﹣A1B1C1D1中,AA1=2,E为AA1的中点,O是BD1的中点.

(Ⅰ)求证:平面A1BD1⊥平面ABB1A1;
(Ⅱ)求证:EO∥平面ABCD.

(Ⅰ)求证:平面A1BD1⊥平面ABB1A1;
(Ⅱ)求证:EO∥平面ABCD.
已知
为两条不同的直线,
为两个不同的平面,给出下列4个命题:
①若
,则
②若
,则
③若
,则
④若
,则
其中真命题的序号为( )


①若


②若


③若


④若


其中真命题的序号为( )
A.①② | B.②③ | C.③④ | D.①④ |
有4个命题:
1)三点确定一个平面;
2)梯形一定是平面图形;
3)平行于同一条直线的两直线平行;
4)垂直于同一直线的两直线互相平行.
其中正确命题的个数为( )
1)三点确定一个平面;
2)梯形一定是平面图形;
3)平行于同一条直线的两直线平行;
4)垂直于同一直线的两直线互相平行.
其中正确命题的个数为( )
A.0 | B.1 | C.2 | D.3 |
如图所示,在正方体
中,点
是棱
上的一个动点,平面
交棱
于点
.则下列命题中真命题的个数是( )
①存在点
,使得
//平面
②存在点
,使得
平面
③对于任意的点
,平面
平面
④对于任意的点
,四棱锥
的体积均不变







①存在点



②存在点



③对于任意的点



④对于任意的点


A.0个 |
B.1个 |
C.2个 |
D.3个 |






















(Ⅰ)求证:



(Ⅱ)求二面角

如图,四边形ABEF是等腰梯形,AB∥EF,AF=BE=2,EF=4
,AB=2
,ABCD是矩形.AD⊥平面ABEF,其中Q,M分别是AC,EF的中点,P是BM中点.

(1)求证:PQ∥平面BCE;
(2)求证:AM⊥平面BCM;
(3)求点F到平面BCE的距离.



(1)求证:PQ∥平面BCE;
(2)求证:AM⊥平面BCM;
(3)求点F到平面BCE的距离.