- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面
- 平面的基本性质
- + 平行公理
- 异面直线
- 异面直线所成的角
- 线面关系
- 面面关系
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.

(1)求证:AB⊥平面B1BCC1; 平面ABE⊥平面B1BCC1;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E-ABC的体积.

(1)求证:AB⊥平面B1BCC1; 平面ABE⊥平面B1BCC1;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E-ABC的体积.
如图所示,在几何体
中,
都是等边三角形,且所在平面平行,四边形
是边长为
的正方形,且所在平面垂直于平面
.

(1)求几何体
的体积;
(2)证明:平面
平面
.






(1)求几何体

(2)证明:平面


在长方体
中,
分别是
的中点,
,过
三点的的平面截去长方体的一个角后.得到如图所示的几何体
,且这个几何体的体积为
.

(1)求证:
平面
;
(2)求
的长;
(3)在线段
上是否存在点
,使直线
与
垂直,如果存在,求线段
的长,如果不存在,请说明理由.








(1)求证:


(2)求

(3)在线段





如图,矩形ABCD中,BC=2,AB=1,PA⊥平面ABCD,BE∥PA,BE=
PA,F为PA的中点.

(1)求证:DF∥平面PEC;
(2)记四棱锥C-PABE的体积为V1,三棱锥P-ACD的体积为V2,求
的值.


(1)求证:DF∥平面PEC;
(2)记四棱锥C-PABE的体积为V1,三棱锥P-ACD的体积为V2,求
