- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面
- 平面的基本性质
- + 平行公理
- 异面直线
- 异面直线所成的角
- 线面关系
- 面面关系
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面几何中,以下命题都是真命题:
①过一点有且仅有一条直线与已知直线平行;
②过一点有且仅有一条直线与已知直线垂直;
③平行于同一条直线的两直线平行;
④垂直于同一条直线的两直线平行;
⑤两组对边分别相等的四边形是平行四边形.
则在立体几何中,上述命题仍为真命题的是______ .(写出所有符合要求的序号)
①过一点有且仅有一条直线与已知直线平行;
②过一点有且仅有一条直线与已知直线垂直;
③平行于同一条直线的两直线平行;
④垂直于同一条直线的两直线平行;
⑤两组对边分别相等的四边形是平行四边形.
则在立体几何中,上述命题仍为真命题的是
已知
,
,
是空间中的三条相互不重合的直线,给出下列说法:①若
,
,则
;②若
与
相交,
与
相交,则
与
相交;③若
平面
,
平面
,则
,
一定是异面直线;④若
,
与
成等角,则
.其中正确的说法是______(填序号).






















已知直线
,
,
,下列说法正确的是( )



A.![]() ![]() ![]() |
B.![]() ![]() ![]() ![]() ![]() ![]() |
C.![]() ![]() ![]() ![]() ![]() ![]() |
D.![]() ![]() ![]() ![]() ![]() |
设a,b,c是空间的三条直线,给出以下五个命题:
①若a⊥b,b⊥c,则a⊥c;
②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;
③若a和b相交,b和c相交,则a和c也相交;
④若a和b共面,b和c共面,则a和c也共面;
⑤若a∥b,b∥c,则a∥c;
其中正确的命题的个数是( )
①若a⊥b,b⊥c,则a⊥c;
②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;
③若a和b相交,b和c相交,则a和c也相交;
④若a和b共面,b和c共面,则a和c也共面;
⑤若a∥b,b∥c,则a∥c;
其中正确的命题的个数是( )
A.0 | B.1 | C.2 | D.3 |
如图,在棱长为a的正方体ABCD﹣A1B1C1D1,E,F,P,Q分别是BC,C1D1,AD1,BD的中点,求证:

(1)PQ∥平面DCC1D1
(2)EF∥平面BB1D1D.

(1)PQ∥平面DCC1D1
(2)EF∥平面BB1D1D.
下列命题中正确的是( )
①平行于同一条直线的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;
③平行于同一个平面的两条直线互相平行;④垂直于同一个平面的两条直线互相平行.
①平行于同一条直线的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;
③平行于同一个平面的两条直线互相平行;④垂直于同一个平面的两条直线互相平行.
A.①② | B.②③ | C.①④ | D.③④ |
如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有( )

①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.
A.1个

①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.
A.1个
A.2个 | B.3个 | C.4个 |
如图,在四棱锥
中,
为棱
中点,底面
是边长为2的正方形,
为正三角形,平面
与棱
交于点
,平面
与平面
交于直线
,且平面
平面
.

(1)求证:
;
(2)求四棱锥
的表面积.














(1)求证:

(2)求四棱锥
