- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- 多面体与球体内切外接问题
- + 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)如图,三棱柱ABC-A1B1C1中,平面ABB1A1⊥底面ABC,
,∠A1AB=120°,D、E分别是BC、A1C1的中点.

(Ⅰ)试在棱AB上找一点F,使DE∥平面A1CF;
(Ⅱ)在(Ⅰ)的条件下,求多面体BCF-A1B1C1的体积.


(Ⅰ)试在棱AB上找一点F,使DE∥平面A1CF;
(Ⅱ)在(Ⅰ)的条件下,求多面体BCF-A1B1C1的体积.
如图,三角形ABC中,AC=BC=

(1)求证:GF//底面ABC;
(2)求证:AC⊥平面EBC;
(3)若正方形ABED的边长为1,求几何体ADEBC的体积.

如图,正方体
中,棱长
,过点
的平面
与正方体的面相交,交线围成一个正三角形.

(1)在图中画出这个正三角形(不必说明画法和理由);
(2)平面
将该正方体截成两个几何体,求体积较大的几何体的体积和表面积.





(1)在图中画出这个正三角形(不必说明画法和理由);
(2)平面

如图,四边形
是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直线
与直线
所成的角为60°.
(1)求证:平面
⊥平面
;
(2)求三棱锥
的体积;












(1)求证:平面


(2)求三棱锥


如图所示,以AB=4 cm,BC=3 cm的长方形ABCD为底面的长方体被平面斜着截断的几何体,EFGH是它的截面.当AE=5 cm,BF=8 cm,CG=12 cm时,试回答下列问题:

(1)求DH的长;
(2)求这个几何体的体积;
(3)截面四边形EFGH是什么图形?证明你的结论.

(1)求DH的长;
(2)求这个几何体的体积;
(3)截面四边形EFGH是什么图形?证明你的结论.
如图所示,已知四边形ABCD是菱形,
平面ABCD,PA=AB=BD=2,AC与BD交于E点,F是PD的中点.
(1)求证:PB//平面AFC;
(2)求多面体PABCF的体积.

(1)求证:PB//平面AFC;
(2)求多面体PABCF的体积.

有一堆规格相同的铁制(铁的密度是 7.8g/
)六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(
取3.14)?



“牟合方盖”是我国古代数学家刘微在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).如图,正边形
是为体现其直观性所作的辅助线,若该几何体的正视图与侧视图都是半径为
的圆,根据祖暅原理,可求得该几何体的体积为




A.![]() | B.![]() | C.![]() | D.![]() |