- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- 多面体与球体内切外接问题
- + 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5,求此几何体的体积.

如图所示,直角梯形
中,
,
、
分别是
、
上的点,且
,
.沿
将四边形
翻折至
,连接
、
、
,得到多面体
,且
.

















(Ⅰ)求多面体的体积;
(Ⅱ)求证:平面⊥平面
.

如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.

(1)求证:平面PAB⊥平面QBC;
(2)求该组合体QPABCD的体积.

(1)求证:平面PAB⊥平面QBC;
(2)求该组合体QPABCD的体积.
我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,上广二丈,袤三丈,下广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),上底宽2丈,长3丈;下底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,再次相加,再乘以高,最后除以6.则这个问题中的刍童的体积为( )


A.13.25立方丈 | B.26.5立方丈 | C.53立方丈 | D.106立方丈 |
如图,在三棱锥
与三棱锥
中,
和
都是边长为2的等边三角形,
分别为
的中点,
,
.
(Ⅰ)试在平面
内作一条直线
,当
时,均有
平面
(作出直线
并证明);
(Ⅱ)求两棱锥体积之和的最大值.








(Ⅰ)试在平面






(Ⅱ)求两棱锥体积之和的最大值.
