- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- 多面体与球体内切外接问题
- + 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,BD是正方形ABCD的对角线,弧
的圆心是A,半径为AB,正方形ABCD以AB为轴旋转,求图中Ⅰ,Ⅱ,Ⅲ三部分旋转所得旋转体的体积之比.


某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )


A.72 cm3 | B.98 cm3 |
C.108 cm3 | D.138 cm3 |
陀螺是汉族民间最早的娱乐工具之一,也称陀罗,闽南语称作“干乐”,北方叫做“冰尜”或“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成.从前的制作材料多为木头,现代多为塑料或铁制.玩耍时可用绳子缠绕,用力抽绳,使其直立旋转;或利用发条的弹力使其旋转.如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,甲、乙是边长为
的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积都等于一个正方形的面积(不计焊接缝的面积).

(1)将你的裁剪方法用虚线标示在图中,并作简要说明;
(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论.


(1)将你的裁剪方法用虚线标示在图中,并作简要说明;
(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论.
鲁班锁是曾广泛流传与民间的智力玩具,它起源于中国古代建筑中首创的榫卯结构,不用钉子和绳子,完全靠自身机构的连接支撑,它看似简单,却凝结着不平凡的智慧.下图为鲁班锁的其中一个零件的三视图,则该零件的体积为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,一块形状为四棱柱的木料,
分别为
的中点.

(1)要经过
和
将木料锯开,在木料上底面
内应怎样画线?请说明理由;
(2)若底面
是边长为2的菱形,
,
平面
,且
,求几何体
的体积.



(1)要经过



(2)若底面






下图是一个奖杯的三视图(单位cm,
取
).

(1)请你说明这个奖杯是由哪些基本几何体组成的;
(2)求这个奖杯的体积;
(3)求这个奖杯的表面积.



(1)请你说明这个奖杯是由哪些基本几何体组成的;
(2)求这个奖杯的体积;
(3)求这个奖杯的表面积.